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The real-time excitation and detection of radial and pseudorotational vibronic motions of Jahn-Teller and
pseudo-Jahn-Teller coupled systems is studied theoretically. A previously developed 2D description of ground
and excited electronic states of the sodium trimer, Na3, is employed as a realistic model system. Within this
scheme the detection of vibronic motions proceeds by measuring the ion signal, possibly resolved for the
kinetic energy of the ejected photoelectrons. It is demonstrated how by changing various pulse parameters,
such as pulse length, strength, or carrier frequency, radial or pseudorotational motions in the ground or excited
electronic states are selectively excited. The particularly interestingsand difficultscase of exciting the
pseudorotational motion in the ground state manifold can be realized by using three different pulses.

I. Introduction

Femtosecond (fs) pump-probe spectroscopy, in its many
different variants existing nowadays, has become a powerful
tool to investigate fundamental photophysical and photochemical
processes and the underlying interaction mechanisms.1-4 One
particular field where it has been successfully applied is the
study of metal atom clusters where already for the smallest
systemssalkali dimers and trimerssa wealth of information
emerged (see, for example, refs 5-12). As regards the analysis
of intramolecular interactions, for example, the usefulness of
pump-probe spectroscopy for revealing the nuclear dynamics
on conically intersecting potential energy surfaces has been
demonstrated in theoretical work by Domcke and co-workers.13

Alkali atom trimers have been, and continue to be, of interest
because of the nonrigidity of the nuclear framework and the
associated highly fluxional nuclear motion, often extending over
multiple minima of the potential energy surface. In addition,
there are frequently many electronic states in a narrow energy
range, rendering the usual adiabatic approximation questionable
and leading to strong nonadiabatic coupling effects. In particular,
there has been much attention in the literature on the case of a
pseudorotational motion encircling a Jahn-Teller (JT) intersec-
tion of potential energy surfaces,14-23 the latter being a special
type of a conical intersection.24-28 Here, even for low vibrational
energies the singular behavior of the adiabatic electronic wave
functions shows up as a corresponding sign change, or geometric
phase, of the vibrational wavefunctions when encircling the
locus of intersection in a closed loop.25-32 Originally the B
excited state of Na3 was believed to be the first experimental
example of a geometric phase in molecular spectroscopy,16 but
later this claim has been disproved.20-22 From the theoretical
side, a geometric phase is present in the X ground state of
Na3,17,23,33but the first experimental verification of this phase
has been achieved recently in a lower excited (A) state of Na3,34

and similar evidence is emerging on the ground state of Li3.35

It is the purpose of the present work to theoretically explore
further aspects of nuclear motion on intersecting potential energy
surfaces and their ramifications in femtosecond pump-probe
spectroscopy. This work has already been started in ref 36 where

the sensitivity of the time-resolved ionization signal to the
presence/absence of the geometric phase in Na3(B) was ad-
dressed. By comparing both companion calculations with the
experimental spectra of Gerber et al.,5,6 additional evidence
against the geometric phase in Na3(B) could be deduced. Now
we extend these earlier calculations by varying the pulse
parameters such as carrier frequency, duration, or intensity. In
this way, we hope to achieve partialcontrol over the type of
motion (radial or pseudorotational) or the electronic state
(ground or excited), excited by the laser and dominating the
observable signal. Of particular interest here is a possible
scenario of how to detect the geometric phase effect in pump-
probe spectroscopy, for example, in the X ground state of Na3

(for earlier work pursuing such a goal along somewhat different
lines see ref 37). We mention that the importance of the pulse
length for the selective excitation of the pseudorotational motion
has been pointed out before in the literature.12 The same holds
for the possibility to excite ground state vibrational motion by
strong laser pulses.38-40 Because of the limitations of our
computational model, described in section II, we cannot expect
to get quantitative predictions for Na3. Nevertheless, we believe
that the trends of our results, presented in section III, will be of
general interest for future work in the field. This point will be
addressed once more in the concluding section IV.

II. Theory

A. The Hamiltonian. The molecular Hamiltonian used for
this study is adopted from an earlier analysis of ground and
excited electronic states of Na3

20,21augmented by the electronic
ground state of Na3+.36 As is well-known,17,33 Na3 in its
electronic ground state (Na3(X)) can be considered as JT
distorted from theD3h conformation to yield three equivalent
2B2 minima and2A1 saddle points (in the appropriateC2V point
group). On the other hand, Na3 in its B excited state (Na3(B))
has been shown to be subject to strong pseudo-Jahn-Teller
(PJT) interactions17,20,21between two nearly degenerate E and
A electronic states leading also to aC2V minimum energy
conformation.17 The earlier modeling rests on the use of a
diabatic electronic basis in which the nuclear kinetic energy
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becomes diagonal and the (off-diagonal) potential energy matrix
is expanded in a Taylor series, up to second order in the nuclear
displacements from theD3h conformation. The totally symmetric
vibrational coordinate is neglected in order to reduce the
computational effort. Finally, the vibrational motion in the
ground state of Na3+ which is not subject to vibronic interaction
will be treated in the harmonic approximation.36

We denote the diabatic basis functions by|φ0(〉 for the Na3
ground state,|φ1(〉 and|φ1A〉 for the excited state manifold, and
|φ2〉 for the Na3+ ground state. The accompanying electron of
Na3

+ with energyEk is represented by the ket|k〉, so that a
complete basis function for (Na3

+ + e-) is |φ2〉|k〉 ≡ |φ2k〉.
Together with the vibronic wave functions|wi(t)〉, the time-
dependent state vector reads

and the time evolution of the system is given by Schro¨dinger’s
equation (withp ≡ 1)

The time-dependent HamiltonianH(t) consists of three
contributions for the three states of the molecule/ion under
consideration. The part for the ion includes also the accompany-
ing electron. Within the approach outlined aboveH(t) reads

T̂N denotes the kinetic energy operator. The diagonal terms
in eqs 4 and 5 represent the unperturbed motion in theE′ ground
state and (E′ + A1′) excited states of Na3 as well as in the ground
state of Na3+ with the harmonic frequenciesω0,1,2, respectively.
E1E stands for the energy of the E′ excited state in theD3h

conformation which is assumed20 identical to that of the A1′
state; the corresponding ground state parameter is set to 0.E2

is the energy minimum of the ionic potential surface. The
(electronically) off-diagonal terms contain the various vibronic
couplings. They depend on polar coordinatesF andφ for the
nuclear motion which are related to the dimensionlessD3h

normal coordinatesQx andQy by

In the appropriateC2V subgroup,Qx corresponds to the normal

coordinate of the bending mode,Qy to that of the asymmetric
stretching mode.20,21,41k0 andg0 are the linear and quadratic JT
coupling constants for the ground state; the PJT couplings of
the excited state arel1 (linear) andf1 (quadratic).

The interaction of the molecule with the radiation field, which
is described classically, is treated in the dipole and rotating-
wave approximation.42,43 For weak field strengths this ap-
proximation is very good. The transition dipole elements in the
diabatic basis are assumed not to depend on the nuclear
coordinates (generalized Condon approximation) nor on the
energy of the ionized electron. Choosing all transition dipole
elements according to the symmetry of the involved states (E′
andA′1), we arrive at the following expression for the dipole
operator:

µb (
EE couples the ground and excitedE′ states, andµb (

EA

similarly couples the ground E′ and the excited A1′ state. Due
to the involved symmetries only the excited E′ system is coupled
to (Na3

+ + e-). The specific form of the dipole operator in eq
9 follows from group theoretical considerations, requiring that
DB forms the basis for an E′ irreducible representation in the
D3h point group. Lacking further knowledge about theµ’s, we
assume them to be real and of the same magnitude.

The electric field of the pulses has the following form:

with the normalization

The standard set of parameters, taken from ref 36 and used
in the calculations below is collected in Table 1. This contains
the parameters for the laser pulses as well as for the molecular
Hamiltonian. The linear JT/PJT coupling constants are seen to
amount to∼4 vibrational quanta which corresponds to mod-
erately strong coupling, in the usual nomenclature.41 These
parameters have been shown earlier to lead to a good 2D
description of the TPI spectrum of Na3(B)36 (for a subsequent

|ψ(t)〉 ) ∑
)0(,1(,1A

|φi〉|wi(t)〉 + ∫0

∞ |φ2k〉|w2k(t)〉 dEk (1)

i
∂

∂t
|ψ(t)〉 ) H(t)|ψ(t)〉

H ) HGround+ HExcited+ HIon + HInteract (3)

HGround) [T̂N +
ω0

2
F2](|φ0+〉〈φ0+| + |φ0-〉〈φ0-|) +

|φ0+〉(k0Fe-iφ +
g0

2
F2e2iφ)〈φ0-| + h.c. (4)

HExcited) [T̂N + E1E +
ω1

2
F2](|φ1+〉〈φ1+| + |φ1-〉〈φ1-| +

|φ1A〉〈φ1A|) + |φ1A〉(l1Feiφ +
f1
2

F2e-2iφ)〈φ1-| +

|φ1A〉(l1Fe-iφ +
f1
2

F2e2iφ)〈φ1+| + h.c. (5)

HIon ) ∫0

∞|φ2k〉[T̂N + E2 +
ω2

2
F2 + Ek]〈φ2k| dEk + h.c.

(6)

HInteract) DB‚EB(t) + h.c. (7)

Feiφ ) Qy + iQx (8)

TABLE 1: Parameters Used for Modeling the Pump-Probe
Ionization Spectrum of Na3

ω0 (cm-1) 90.5
k0 5.35ω0

g0 0.076ω0

E1E (cm-1) 15806
ω1 (cm-1) 127
l1 3.07ω1

f1 0.0045ω1

E2 (cm-1) 30658
Emax (cm-1) 508
ω2 (cm-1) 102
µb (

EE‚EB10 -0.1ω1

µb (
EA‚EB10 0.1ω1

µb (
I ‚EB20 -0.2ω1

σix8 ln 2 (fs) 60
Ωi/(2πc) (cm-1) 16051

DB ) |φ1-〉µb +
EE〈φ0+| + |φ1+〉µb -

EE〈φ0-| + |φ1A〉µb -
EA〈φ0+| -

|φ1A〉µb +
EA〈φ0-| + ∫0

∞
(|φ2k〉µb -

I Ek)〈φ1+| -

|φ2k〉µb +
I (Ek)〈φ1-|) dEk (9)

µb (
X ) µb y

X ( µb x
X; X ) EE, EA, I (10)

EB(t) ) ∑
i)1

2

EBi(t); EB(t) ) EBi0

e-iΩi(t-ti0)

xxπσi

exp[-
(t - ti0)

2

2σi
2 ] (11)

∫|EBi(t)|2 dt ) |EBio|2
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3D description see ref 44). Cuts through theC2V potential energy
surfaces for these parameters, corresponding toæ ) 0, 2π/3,
or 4π/3 in eqs 4 and 5, are shown in Figure 1. For the underlying
analytical expressions of these potential energy surfaces we refer
to refs 20 and 21.

Computation of the Observable Signal. In the present
calculations, the observable quantity is taken to be the (Na3

+ )
ion yield as resulting from two femtosecond laser pulses that
first excite the system from the ground (X) to the excited (B)
state and second ionize the electronically excited molecule (see
vertical arrows in Figure 1. The ionic signal, resolved for the
energy of the accompanying electron, is

with ∆t ) t20 - t10, according to eq 11. Of particular interest
here is the case of zero electron kinetic energyEk ) 0, leading
to the time-resolved ZEKE spectrum (see, for example, refs 6,
13, and 45). The other relevant special case is the time-resolved
total ion yield and is obtained simply as the integral ofI(Ek,∆t)
over the whole kinetic energy range

These observables are computed numerically36 from the time-
dependent wave functionψ(t). The vibronic part of the latter is
expanded in two-dimensional harmonic oscillator functions. For
the numerical integration the complete Hamiltonian is again
written as a sumH0 + HI(t) of a time-independent partH0 and
an interaction partHI(t), the latter comprising all off-diagonal
or vibronic coupling terms and the molecule-field interaction
(DB‚EB(t) + hc.). Since the dynamics ofH0 can be treated
exactly, we transform eq 2 to the interaction picture and solve
it numerically. The numerical integrator uses the Bulirsch-Stoer
method (ref 46, Chapter 16) which we have found to be superior
to other methods regarding accuracy and speed.

For the discretization of the electron continuum we adopt
the method of Burkey and Cantrell:47,48The electron continuum
is included up to a maximum energyEmax and the energy
dependence of|w2k(t)〉 in the interval [0,Emax] is expanded in
terms of polynomials that are chosen orthogonal with respect
to the transition dipole moment distributionsµb (

I (E). Taking
µb(

I (E) to be constant in the interval [0,Emax] and 0 outside it,
the polynomials in question are the Legendre polynomials.47-49

It has been shown elsewhere49 that this method produces good
results even for a small number of expansion coefficients.

III. Results and Discussion

A. Excited State Dynamics.Figure 2 displays the results of
our “reference” calculation with the standard set of parameters
as listed in Table 1. Panels b and c are included for the ease of
reading and reproduce Figure 2a of ref 36. The low-frequency
structure of the Fourier-transformed ion signal (Figure 2b) has
been taken in that earlier work as (additional) evidence for the
PJT-dominated vibronic coupling mechanism in Na3(B). The
spectrum is dominated, however, in both the time and frequency
domain, by the strong radial oscillation in the B-state with a
frequency of≈127 cm-1. This is caused by the relatively small
carrier frequencies of the pump and probe pulses of 16 051 cm-1

which were adopted from the experimental setup of refs 5 and
6. They allow for appreciable ionization only near the inner
turning point of the B-state potential (see Figure 1). Therefore,
the time-resolved photoelectron spectrum in Figure 2a always
peaks at zero kinetic energy and the ZEKE spectrum displayed
in panels d and e closely resembles the full ion signal from
panels b and c. These findings already go beyond the results
shown in ref 36 and are consistent with the experimental results
of Baumert et al.6 Together with the full time-resolved photo-

Figure 1. Potential energy curves for the parameter set of Table 1
representing various electronic states of Na3.

I(Ek,∆t) ) 〈ψ(tf∞)|φ2k〉〈φ2k|ψ(tf∞)〉 )
〈w2k(tf∞)|w2k(tf∞)〉 (12)

Itotal(∆t) ) ∫0

∞
I(Ek,∆t) dEk (13)

Figure 2. Results of pump-probe calculations on Na3, using the
parameter values from Table 1. The energy- and time-resolved ion
signal is shown in (a), the total ion yield is shown in (b), and the Fourier
spectrum of the latter in (c). In (d) and (e) we show ZEKE spectra
with the same parameters.
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electron spectrum in panel a they complete the analysis of the
standard parameter set.

A modern issue in pump-probe spectroscopy is not only
observation but alsocontrolof molecular dynamics. As regards
Na3 (B), the importance of the pulse length has been pointed
out in the literature12 which allows to selectively excite either
pseudorotational or stretching motions. Here we wish to
demonstrate that also the pulse wavelength is a suitable control
parameter for that purpose. Figure 3 collects results for a
situation completely analogous to Figure 2 but with the pulse
carrier frequency being increased by 1613 cm-1. This frequency
is now large enough to allow for ionization atall values ofF
(≡Qy in Figure 1) which are relevant after excitation with the
pump pulse. The mean photoelectron kinetic energy is still seen
to oscillate in Figure 3a. However, the maximum of the kinetic
energy distribution is now seen to occur at a nonzero value for
all times. Hence the ZEKE signal (panels d and e) is seen to
differ greatly from the full ion signal (panels b and c). Since
the ZEKE signal mimics the oscillations of the electron kinetic
energy, it is still dominated by the radial oscillations as in Figure
2, d and e. This, however, does not hold any more for the full
ion yield which is seen to exhibit a rather irregular pattern with
a much longer mean period than before. In fact, these are of
the order of a picosecond as is the time scale of the pseudoro-
tational motion.7,12 In an intermediate frequency regime the
pseudorotation can indeed affect the ion signal because the
“radial” potential is a function of the pseudorotation angle
(compareQy g 0 in Figure 1 which are not identical and
representφ ) 0 andπ, respectively). Therefore, we attribute
the time dependencies in Figure 3b as due to the pseudorota-
tional motion. Of course, the present modeling is too simplified
to allow for a quantitative prediction for Na3 since higher order

anharmonic terms, theQ-dependence of the transition matrix
elements, and also the breathing mode are neglected. Neverthe-
less, we are convinced that the effect in question is in principle
described correctly by our simulations. Therefore, they show
another possible route to achieve selective excitation and
detection of the pseudorotational over the radial motion.

B. Ground State Dynamics.So far, the pulse intensities
considered were relatively weak and did not allow for excitation
of ground state vibrational dynamics; rather the pump-probe
sequence consisted of two one-photon transitions with the first
photon exciting the system to the intermediate, or B, state and
the second photon ionizing out of the latter. In Figure 4 we
present results of a simulation with much stronger pulses,
namely a pulse strength of 0.3ω for the pump pulse and 1.5ω
for the probe pulse (in the earlier figures the pulse strengths
are 0.1ω and 0.2ω, respectively; see Table 1, which still applies
for all other parameters). The time-dependent signal resembles
that in Figure 2, but the Fourier transform (FT) in Figure 4b
shows an additional peak at≈85 cm-1. This corresponds to
the frequency of the radial mode in the ground state (X state)
potential energy surface; see Table 1. Indeed, there are
significant radial oscillations in the X-state as computed from
the expectation value〈F〉X with the X-state component of the
vibronic wave-packet (see Figure 4c). These arise from the first
pulse pumping up to the B-state and then down again to the
X-state, so that the relative displacement of the two potential
surfaces leads to a coherent vibrational motion in the ground
state. The second pulse finally ionizes out of the X-state. In a
companion calculation the B-X coupling of the second pulse
has been switched off and the peak at≈85 cm-1 in the FT of
the ion signal indeed disappears, as shown by Figure 4d.

The excitation of the ground state radial oscillation is clearly
visible in Figure 4b but nevertheless relatively weak. Stronger
excitation is possible, for example, with longer pump pulses.
Figure 5 presents results with twice the pulse length of Figure
4, i.e., a pulse duration (fwhm) of 120 fs, but otherwise identical
parameters. Now already the time-dependent signal in Figure
5a differs markedly from before, and its Fourier transform in
Figure 5a is characterized by a strong (double) peak at≈85
cm-1 which even exceeds the peak at≈127 cm-1 in intensity.
In other words, the ground state motion now dominates over
the excited state motion in the total ion signal. Nevertheless,

Figure 3. Same as Figure 2, but with the energy of the ionizing pulse
being increased by 1613 cm-1. The energy-resolved ion signal exhibits
an oscillation with a period of 260 fs, as in Figure 2. This oscillation
is still visible in the ZEKE spectrum, but due to the increased frequency
of the second pulse it has almost no influence on the total ion yield.

Figure 4. Detecting ground state dynamics in a pump-probe signal
with increased laser pulse intensity. We show the signal and its Fourier
transform in (a) and (b). To prove that the observed line at 86 cm-1 is
due to the ground state dynamics, we show the mean value of the radial
coordinateF in the ground state in (c) and a comparison calculation
with disabling the probe-pulse coupling between ground and excited
state in (d).
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the amplitude of the X-state radial oscillation is smaller than
before; compare Figure 5c with Figure 4c. The strongerrelatiVe
excitation in Figure 5b has to do with the smaller overall
ionization probability in this situation. Companion calculations,
not shown here in graphical form, reveal that the ion signal is
reduced by about 2 orders of magnitude upon doubling the pulse
length. This is a typical strong field effect and we attribute it to
the well-known Rabi oscillations,50,51possibly also destructive
interference of the two pathways of ionizing the systems
(exciting to the B state only with the first or also with the second
pulse). As a consequence, the absolute weakening of the radial
oscillation in Figure 5c does not prevent it from dominating
over the B-state motion in Figure 5b.

As stated in the Introduction, one of the main goals of this
work is to show a possible route to identify the geometric phase
in a time-resolved pump-probe experiment. Within our Na3

(X,B) model system this amounts to selectively excite the
X-state pseudorotational motion, thus combining the two effects
addressed so far in the two subsections III A and III B. Not
surprisingly, this goal proves quite difficult to accomplish. In
fact, after a number of trial calculations it appears almost
impossible to excite X-state pseudorotational motion with pump
and probe pulses being of the form of eq 11 with the same
constant carrier frequenciesΩi (i ) 1, 2). (The case of chirped
pulses is discussed briefly below.) The reason is simple to
understand from the characteristics of the X-state potential
energy surface.17,20,21 It consists of three equivalent minima
being separated by saddle points with a barrier height of∼180
cm-1. Two pulses with the same wavelength almost invariably
pump the system back to a location close to one of the minima
where the pseudorotation amounts to a tunneling motion and is
much too slow to be monitored with time delays available for
femtosecond pulses (the tunneling splitting, according to ref 34,
amounts to only∼0.01 cm-1).

In order to achieve a sensible excitation of X-state pseudoro-
tation the second pulse should be red-shifted and thus place
the system at an energy near that of one of the saddle points of
the X-state potential. This is illustrated by Figure 6 which shows
the results of a wavepacket propagation with an initial state
located at one of these saddle points. The latter is displayed,
together with a contour line drawing of the potential surface,
in panel a. The subsequent panels nicely show the broadening
of the wavepacket until it finally spreads completely around

the JT conical intersection at the origin. In the upper half plane
the lineQx ) 0 constitutes a nodal line where the wavefunction
is locally antisymmetricunder the mirror operationQx f -Qx.
This is oppositeto the behavior in the lower half-plane and
represents the quantum dynamical manifestation of the geometric
phase.31,32,52,53Note that the contour lines in Figure 6 represent
the probability densities|ψ(t)|2 and therefore do not reflect the
symmetry properties directly. However,|ψ(t)|2 is still seen to
vanish along the upper halfQy-axis, but is finite on the lower
half Qy-axis.

A complete revolution of the wavepacket around the X-state
conical intersection is possible even without placing the system
at one of the saddle points. Consider Figure 7 which displays
the time evolution of a wavepacket after excitation with two
realistic pulses of different wavelength. The first pulse is
virtually the same as before and the second one is red shifted
by ≈100 cm-1. Both have the same pulse length (fwhm) of 60

Figure 5. Influence of the pulse length on the observed ground state
dynamics. We show the real time spectrum in (a), its Fourier transform
in (b). Again as in Figure 4, we prove that the observed line at 86
cm-1 is due to ground state dynamics by showing the mean value of
the radial coordinateF in (c) and a calculation with disabled probe-
pulse coupling in (d).

Figure 6. Ground state dynamics for a wave packet with initial position
Qx ) 0, Qy ) -5, i.e., localized on a saddle point of the potential
energy surface. We show timest ) 0 fs in (a),t ) 167 fs in (b),t )
334 fs in (c), andt ) 1 ps in (d). Contour lines for the wavepacket are
indicated as full lines, those for the potential energy surface are added
in panel (a) as dashed lines.

Figure 7. Ground state propagation after exciting with two pulses with
frequencies 16 135.4 and 16 038.8 cm-1. The time delay between the
pulses is 245 fs. We show the ground state packet at timesT ) 225 fs
in (a),T ) 475 fs in (b),T ) 663 fs in (c), andT ) 1.23 ps in (d). For
the meaning of the contour lines see Figure 6. To highlight the
dynamics, the contour lines for the wavepacket only cover up to 25%
of the maximum probability density in the ground state.

Pseudorotatioanl Vibronic Motion J. Phys. Chem. A, Vol. 103, No. 43, 19998583



fs. The time delay of 245 fs is chosen so that the wavepacket
has reached the inner turning point of the radial oscillation when
the second pulse has maximum intensity. At this time, also a
substantial broadening along the pseudorotational angle has
occurred in the excited state (see Figure 3 of ref 36). The red
shift of the second pulse is chosen so as to be in resonance
with the saddle point. Correspondingly, the wavepacket in panel
a, at a time near the maximum of the second pulse (see figure
caption), exhibits an appreciable pseudorotational broadening.
Also, it is located energetically sufficiently highly above the
minimum so that the pseudorotational motion proceeds on a fs
time scale; see panels b and c. As soon as the wavepacket
encircles the conical intersection at the origin, one recognizes
the anomalous symmetry property in the lower and upper half-
planes as described above. This is again a manifestation of the
geometric phase which may be interpreted as arising from
destructive interference of the different parts of the wavepacket
encircling the conical intersection on opposite sides.30,31 This
behavior leads to a differentglobal shapeof the wavepacket
and may be monitored with a third, ionizing pulse. As discussed
in earlier work,31,32,36it will indeed show up in the corresponding
time-dependent ion signal.

Finally, we repeat that the above investigation focused on
the case of constant carrier frequencies of pump and probe
pulses; see eq 11. The same goal might also be achieved by
using a single chirped pulse, so that the molecule is pumped
down by a suitable lower-frequency radiation at a later time
during the pulse.

IV. Concluding Remarks

In this contribution we have explored possible routes to excite
radial and pseudorotational motions in Jahn-Teller and pseudo-
Jahn-Teller coupled systems by time-resolved pump-probe
experiments, such as time-resolved ionization spectroscopy. The
model system treated mimics important aspects of the X ground
and B excited states of the sodium trimer. Thus, the ground
state has been taken as a Jahn-Teller system and the excited
state as a purely pseudo-Jahn-Teller coupled electronic mani-
fold. Various possible routes to selectively excite either type
of motion in the ground or excited electronic states have been
indicated in this study. Also, the important issue of detecting
the geometric phase in Na3 (X) has been addressed above. (For
another approach to detect geometric phase effects, by impulsive
wavepacket interferometry, we refer to the work of J. Cina and
co-workers.37) The present results cannot be considered a
quantitative prediction for Na3, due to the type of model adopted
and the neglect of the breathing mode in the calculation.
Nevertheless, important qualitative trends are not affected by
this limitation. We mention the suppression of the radial motion
in the excited state by increasing the carrier frequency of the
pump pulse. This is caused by the PJT distortion in the excited
state which is confirmed by ab initio calculations17. Also the
existence of the geometric phase in Na3(X) is well established
from a theoretical point of view and its detection in real time
would be highly desirable. Therefore, we hope that the present
study may stimulate further experimental efforts in this interest-
ing field.
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